150 research outputs found

    Role of regular physical activity in neuroprotection against acute ischemia

    Get PDF
    One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function following neurological diseases such as ischemic stroke or traumatic brain injury. Unfortunately, the efficacy of exogenous administration of these neurotrophins is limited by rapid degradation with subsequent poor half-life and a lack of blood–brain-barrier permeability. Regular exercise seems to be a therapeutic approach able to induce the activation of several pathways related to the neurotrophins release. Exercise, furthermore, reduces the infarct volume in the ischemic brain and ameliorates motor function in animal models increasing astrocyte proliferation, inducing angiogenesis and reducing neuronal apoptosis and oxidative stress. One of the most critical issues is to identify the relationship between neurotrophins and myokines, newly discovered skeletal muscle-derived factors released during and after exercise able to exert several biological functions. Various myokines (e.g., Insulin-Like Growth Factor 1, Irisin) have recently shown their ability to protects against neuronal injury in cerebral ischemia models, suggesting that these substances may influence the degree of neuronal damage in part via inhibiting inflammatory signaling pathways. The aim of this narrative review is to examine the main experimental data available to date on the neuroprotective and anti-ischemic role of regular exercise, analyzing also the possible role played by neurotrophins and myokines

    New Insights in Prevention and Treatment of Cardiovascular Disease

    Get PDF
    Cardiovascular (CV) disease (CVD) is still a major cause of morbidity and mortality in many countries in Europe although considerable efforts have been made in recent decades to address this disease in an even more “comprehensive” approac

    Energy efficiency improvement by the application of nanostructured coatings on axial piston pump slippers

    Get PDF
    Axial piston pumps and motors are widely used in heavy-duty applications and play a fundamental role in hydrostatic and power split drives. The mechanical power losses in hydraulic piston pumps come from the friction between parts in relative motion. The improvement, albeit marginal, in overall efficiency of these components may significantly impact the global efficiency of the machine. The friction between slipper and swash plate is a functional key in an axial piston pump, especially when the pump (at low rotational speed or at partial displacement) works in the critical areas where the efficiency is low. The application of special surface treatments have been exploited in pioneering works in the past, trying different surface finishing or adding ceramic or heterogeneous metallic layers. The potential of structured coatings at nanoscale, with superhydrophobic and oleophobic characteristics, has never been exploited. Due to the difficulty to reproduce the real working conditions of axial piston pump slippers, it has been made a hydraulic test bench properly designed in order to compare the performance of nano-coated slippers with respect to standard ones. The nano-coated and standard slippers have been subjected to the following working conditions: a test at variable pressure and constant rotational speed, a test at constant pressure and variable rotational speed. The comparison between standard and nanocoated slippers, for both working conditions, shows clearly that more than 20% of friction reduction can be achieved using the proposed nano-coating methodology

    Cardiac remodeling according to the nocturnal fall of blood pressure in hypertensive subjects: The whole assessment of cardiac abnormalities in non-dipper subjects with arterial hypertension (wacanda) study

    Get PDF
    Objective: Several epidemiological studies suggest that the preservation of the physiological circadian rhythm of blood pressure or its disruption affects the extent of the organ damage developed by the patient. If we classify the circadian rhythm of blood pressure into four nocturnal profiles, significant differences emerge in terms of organ damage burden and prognosis: reverse dippers have the worst prognosis while dippers and mild dippers fall into an intermediate risk range. The risk profile of extreme dippers is still debated, and the available data are very conflicting and inconclusive. Starting from this gap of knowledge, we aimed to evaluate, retrospectively, in a cohort of hypertensive subjects, the degree of cardiac involvement in relation to the different nocturnal blood pressure profiles. Methods: We retrospectively evaluated 900 patients with essential hypertension, of whom 510 met our study criteria. We graded the 510 patients in relation to the percentage of reduction in mean systolic blood pressure (SBP) at night-time compared with day-time, considering this as a continuous variable, and then compared the extreme quintiles with each other and with the middle quintile (considered as reference). Results: Patients with less (or no) reduction in nocturnal SBP (reverse dipper) showed a higher level of organ damage and comorbidities. With regard to echocardiographic indexes, patients with maximum nocturnal pressure reduction (extreme dipper) showed a lower level of remodeling and/or impairment of E/e’ ratio, Right Atrium Area, Basal Right Ventricular Diameter, Inferior Vena Cava Average Diameter, and Tricuspidal Anular Plane Systolic Excursion compared also with hypertensive patients with a physiological nocturnal pressure reduction, even after correction for the main confounders. Conclusions: These data suggest that extreme dippers may constitute the subgroup of hypertensive patients with the lowest 24-h pressure load and, therefore, less cardiac remodeling

    AKTIP/Ft1, a new shelterin-interacting factor required for telomere maintenance

    Get PDF
    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (humanAKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factoridentified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere disfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication

    Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation.

    Get PDF
    OBJECTIVES: Interleukin (IL)-23 has been implicated in the pathogenesis of ankylosing spondylitis (AS). The aim of the study was to clarify the mechanisms underlying the increased IL-23 expression in the gut of AS patients. METHODS: Consecutive gut biopsies from 30 HLA-B27(+) AS patients, 15 Crohn's disease (CD) patients and 10 normal subjects were obtained. Evidence for HLA-B27 misfolding was studied. Unfolded protein response (UPR) and autophagy were assessed by RT-PCR and immunohistochemistry. The contribution of UPR and autophagy in the regulation of IL-23 expression was evaluated in in vitro experiments on isolated lamina propria mononuclear cells (LPMCs). RESULTS: Intracellular colocalisation of SYVN1 and FHCs but not a significant overexpression of UPR genes was observed in the gut of AS patients. Conversely, upregulation of the genes involved in the autophagy pathway was observed in the gut of AS and CD patients. Immunohistochemistry showed an increased expression of LC3II, ATG5 and ATG12 but not of SQSTM1 in the ileum of AS and CD patients. LC3II was expressed among infiltrating mononuclear cells and epithelial cells resembling Paneth cells (PC) and colocalised with ATG5 in AS and CD. Autophagy but not UPR was required to modulate the expression of IL-23 in isolated LPMCs of AS patients with chronic gut inflammation, CD patients and controls. CONCLUSIONS: Our data suggest that HLA-B27 misfolding occurs in the gut of AS patients and is accompanied by activation of autophagy rather than a UPR. Autophagy appears to be associated with intestinal modulation of IL-23 in AS

    INFLAMMATION IN IRRITABLE BOWEL SYNDROME: MYTH OR NEW TREATMENT TARGET?

    Get PDF
    Low-grade intestinal inflammation plays a key role in the pathophysiology of irritable bowel syndrome (IBS), and this role is likely to be multifactorial. The aim of this review was to summarize the evidence on the spectrum of mucosal inflammation in IBS, highlighting the relationship of this inflammation to the pathophysiology of IBS and its connection to clinical practice. We carried out a bibliographic search in Medline and the Cochrane Library for the period of January 1966 to December 2014, focusing on publications decribing an interaction between inflammation and IBS. Several evidences demonstrate microscopic and molecular abnormalities in IBS patients. Understanding the mechanism underlying low-grade inflammation in IBS may help to design clinical trials to test the efficacy and safety of drugs that target this pathophysiologic mechanism

    Ectopic expression of CXCL13, BAFF, APRIL and LT-Ăź is associated with artery tertiary lymphoid organs in giant cell arteritis

    Get PDF
    Objectives To investigate whether artery tertiary lymphoid organs (ATLOs) are present in giant cell arteritis (GCA) and that their formation is associated with the ectopic expression of constitutive lymphoid tissue-homing chemokines. Methods Reverse transcriptase PCR, immunohistochemical and immunofluorescence analysis were used to determine the presence of ectopic ATLOs in GCA and the expression of chemokines/chemokine receptors and cytokines involved in lymphoneogenesis in the temporal artery samples obtained from 50 patients with GCA and 30 controls. The presence of lymphatic conduits, of follicular dendritic cells (FDCs) precursors and lymphoid tissue inducer cells was also investigated. Finally, expression of CXCL13, B cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and CCL21 by isolated myofibroblasts was evaluated before and after stimulation with Toll-like receptors (TLRs) agonists and cytokines. Results ATLOs were observed in the media layer of 60% of patients with GCA in close proximity to high endothelial venules and independently by the age of patients and the presence of atherosclerosis. ATLO formation was also accompanied by the expression of CXCL13, BAFF, a proliferation-inducing ligand (APRIL), lymphotoxin (LT)-Ăź, interleukin (IL)-17 and IL-7, the presence of FDC precursors and of lymphoid conduits. Stimulation of myofibroblasts with TLR agonists and cytokines resulted in the upregulation of BAFF and CXCL13. Conclusions ATLOs occur in the inflamed arteries of patients with GCA possibly representing the immune sites where immune responses towards unknown arterial wall-derived antigens may be organised

    Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis

    Get PDF
    OBJECTIVE: Long-term evolution of subclinical gut inflammation to overt Crohn's disease (CD) has been described in AS patients. The aim of this study was to evaluate macrophage polarization occurring in the inflamed gut of patients with AS. METHODS: Twenty-seven HLA-B27(+) AS patients, 20 CD patients and 17 normal controls were consecutively enrolled. Classic M1 (iNOS(+)IL-10(-)), resolution phase (iNOS(+)IL-10(+)), M2 and CD14(+) macrophages were characterized by immunohistochemistry and flow cytometry. Quantitative gene expression analysis of IFN-Îł, IL-4, IL-5, IL-33 and STAT6 was performed by real time PCR. RESULTS: Classic M1 macrophages were expanded in CD and AS, where resolution phase macrophages predominate. A large increase in CD163(+) (M2) macrophages was observed in AS strictly correlated with the expression of IL-33, a Th2 cytokine involved in M2 polarization. Unlike in CD, CD14(+) macrophages were virtually absent in the gut of AS patients and controls. CONCLUSION: The absence of CD14(+) macrophages together with the expansion of resolution phase and M2 macrophages is the immunological signature of subclinical ileal inflammation in AS

    Interleukin-36α axis is modulated in patients with primary Sjögren's syndrome.

    Get PDF
    The aim of this study was to investigate the expression of the interleukin (IL)-36 axis in patients with primary Sjögren's syndrome (pSS). Blood and minor labial salivary glands (MSG) biopsies were obtained from 35 pSS and 20 non-Sjögren's syndrome patients (nSS) patients. Serum IL-36α was assayed by enzyme-linked immunosorbent assay (ELISA). IL-36α, IL-36R, IL-36RA, IL-38, IL-22, IL-17, IL-23p19 and expression in MSGs was assessed by reverse transcription-polymerase chain reaction (RT-PCR), and tissue IL-36α and IL-38 expression was also investigated by immunohistochemistry (IHC). αβ and γδ T cells and CD68(+) cells isolated from MSGs were also studied by flow cytometry and confocal microscopy analysis. IL-36α was over-expressed significantly in the serum and in the salivary glands of pSS. Salivary gland IL-36α expression was correlated with the expression levels of IL-17, IL-22 and IL-23p19. IL-38, that acts as inhibitor of IL-36α, was also up-regulated in pSS. αβ(+) CD3(+) T cells and CD68(+) cells were the major source of IL-36α in minor salivary glands of pSS. γδ T cells were not significantly expanded in the salivary glands of pSS but produced more IL-17, as their percentage correlated with the focus score. Higher expression of IL-36α and IL-36R was also demonstrated in γδ T cells isolated from pSS compared to controls. In this study we demonstrate that a significant increase in circulating and tissue levels of IL-36α occurs in pSS patients
    • …
    corecore